SAIL - Scripting AI Language

Basic language description

SAIL should be the programming language for missions and campaign in Original War. It should play the following role:

 control mission

 definition of the starting position

 generation of and handling game events (reinforcements and shipments arrival, ...)

 checking the victory conditions, checking failure, secondary objectives

 control AI

 control of NPC (characters, that play important part in the story)

 control of enemy units (see below)

 handle dialogues

 messages and commands from high command

 dialogues related to the story between the player's characters

 characters reactions to certain situation (exclamations: "This is him, he must not escape!", "Damn, what a monster!?", etc.)

 branching dialogue, that gets the player's decision during mission

 control the whole campaign

 definition of sequence of individual missions

 handling of briefings, running FMV

 generation of characters, tracking their progress and related data from mission to mission

 handling the player's decision making outside of missions (e.g. selection of people to take into next mission)

In order to be able to handle all this functions and provide the designer with comfort services, SAIL has to be as strong as an ordinary programming language. Its syntax and data structures will be adjusted to the game needs and the game engine will provide the designer with a large function library.

Interaction between the language and game engine

We have analysed the needs of the language to arrive at the most favourable way of its implementation: source code is compiled to intermediate code that is interpreted by an unlimited set of virtual processors. This ensures both the possibility of multitasking (during a dialogue between the player's characters the enemies can play and shipments can appear on the map) and possibility of tying programs to certain events in game (a program can wait for a certain amount of time or for certain event – the process will stop for some time while the game goes on).

Source code

Each mission has unlimited amount of program modules. These contain one or more triggers and one or more pieces of code. Trigger tests for a certain condition in regular intervals and when the condition is fulfilled, it executes the program associated with it. Two of these triggers have specific names: starting and final – they handle the beginning and end of a mission. Besides that the modules contain variable declarations and auxiliary functions available to the code within module.

Besides that, the whole campaign has its system of program modules. These contain no triggers but exactly one program block named campaign that handles running briefings, dialogues and missions. The campaign source code contains also functions and variables available to all missions (e.g. certain variable presents to starting trigger the information about characters carried over from past mission – and mission will use this variable to report the final state of the units).

Pre-processor

Pre-processor will edit source code for further processing. It will delete comments, expand macro-definitions and, most importantly, it will handle conditional parts of code. These can be e.g. some debugging outputs that are used only for mission development, or parts that depends on the difficulty settings (e.g. some reinforcements or shipments would appear in the easiest setting only). The pre-processor will thus generate as many pre-processed texts as many difficulty settings there is.

Compiler

Because the interpretation of a text file would be too time-consuming, the pre-processed source code is compiled to elementary instruction. The compiler will run syntax check of the code and if successful it will create intermediate code – a binary file with a sequence of instructions. This intermediate code can be displayed in human readable format for the purpose of debugging (it will show addresses, names and parameters of each macro-instruction).

Interpreter

While the above mentioned are part of the editor, interpreter is integrated into game engine. It consists of dynamical set of processors – a new processor can be created and assigned a starting address at any time. When the program ends, the processor is discarded. A processor can execute instructions step by step. Execution can be interrupted at any time and state of the processor will remain the same, while another processor gets its time slice – this facilitates the parallel execution of multiple programs. The state of all processors can be saved to a disk – this is a part of game save.

A single process campaign is executed after starting the game. It will run particular missions, FMVs and briefings – the process always wait for them to finish before going on. There is no multitasking in control of the campaign.

When the mission starts, the compiled intermediate code for this mission and difficulty setting is read. This contains (among others) a list of all triggers – the game engine checks regularly for these conditions. Every time a particular code is triggered, a new processor is created and assigned the address of trigger. This particular trigger is disabled at the same time. Before the start of the game a trigger starting is run. It will generate data for the mission that are not firmly set beforehand (these may be random settings or things dependent on the outcome of previous missions).

Thus, during a mission, a process checking the triggers is running as well as none, one or more processes triggered by particular triggers. The processes can communicate by means of certain variables and global variables of campaign. When the mission ends (one of the processes will signal it) all processes are terminated and code associated with trigger final is executed. It will process data that should be carried over to next mission (it will save them into global variables of the campaign).

Libraries

Because the language is interpreted, it is better to implement often-used and time-consuming functions in the game engine (e.g. path finding). The engine offers a large function library available through header file, e.g. a function for distance between two units, function that returns a list of units in a given area, function for attack strength of a list of units, etc.

The libraries also contain functions for controlling game, e.g. for issuing commands to units, running dialogues, creation of units, etc. The following function have special impact: take_control(list, priority) and lose_control(list) – they will enable the process to "book" some units with a given priority. No other process can issue commands to these units without having a higher priority. This mechanism will ensure that multitasking does not result in units mindlessly scurrying around under the control of several processes.

The libraries also offer some game variables that can be both read and changed. It is possible to change some unit parameters in this way.

And last but not least the libraries contain constants that can be used in the game (com_attack is constant for attack command, type_vehicle is constant for unit type vehicle, etc.).

Language syntax

Control structures

The language syntax is similar to that of Pascal. It contains all Pascal control structures: begin-end block, conditions if and case, cycles while, repeat and for. Case is extended, as the labels need not to be expressions but constants as well. For can beside the standard option of iterating through numerical interval also iterate through all elements of some array or set (syntax: for <variable> in <set> do).

Syntax diagrams are in Appendix A.

Types and variables

The following data types are going to be implemented:

 simple
 basic
 int – 32-bit whole number

 real – 64-bit real number

 char – unicode character (16 bit)

 string – string of unicode characters

 game
 person – character

 unit – unit withing game (character, vehicle or building)

 area - oblast (část mapy definovatelná editorem)

 ... další je možno přidat dle potřeby ...

 structured
 list – list of variables

 array – array of variables

All variables are untyped, i.e. data of any type can be stored in a variable. The variable has information about the type of value stored. When necessary, automatic type conversion will take place (e.g. function requires parameter list and receives a unit – unit will be converted to one element list containing this unit). The complete list of conversion functions is in Appendix B.

Identifiers and constants

Identifiers start with a letter and contain only letters, number and underscores. They can be of any length, capitalisation is ignored.

Language contains real and integer numerical constants in usual form, string and character constants in single quotes and list constants of the form: [element1 , element2, ...]
Scope

Language implements for types of scope: global, export, module and local. It allows nested functions (like Pascal).

Global

Global variables and functions can be defined only in campaign source code. They are visible from all source code of the campaign and all missions.

Export

Export variables and functions are visible from all campaign or mission modules.

Module

Module variables and functions are visible only in this module.

Local

Local variables and functions are visible within the block of code associated with particular trigger and from within nested blocks.

Operators

Language contains binary and unary operators with defined priorities. They are listed in Appendix C. The expressions are evaluated according to the priority, with same priority from left to right. The evaluation of logical expressions is incomplete.

Integration of language structures, editor and game

The language can obtain reference to particular game structure in two ways. If program creates it, the library function returns the reference itself, e.g.:

groupA:=[];

for i:=1 to 5 do

 groupA:=groupA ^ create_random_unit(starting_area, player, class_soldier, nat_american, 3);

will create a group of five American soldiers of the player's side and approximate level 3 in starting area and will put it into list named groupA.

pointA:=point(x1,y1);

landing_area:=expand_area(pointA,8);

will create small area (one hex) named pointA and area named landing_area by expanding it by 8 hexes in all directions.

The other way is naming a unit or area directly in the editor. The designer can e.g. create an area, name it landing_site and use this identifier in the mission programs. Similarly, he can name characters soldier1, soldier2, etc. and then use their identifiers.
Function calls

Function parameters can be called by reference or by value. The parameters have no types, for each function, only the number of parameters and definition, which of them is called by reference or by value, is necessary. Each function has the local variable result.

The library functions have their parameters types defined for the designer's information only.

APPENDICES
Appendix A – language syntax diagrams

See attached file syntax_?.jpg

Appendix B – data type conversions

list -> array
by indexing the list elements

array -> list
indexing is ignored

simple -> array
array with one element

simple -> list
list with one element

int -> real
same number in form of real number

real -> int
rounding

list -> int, real
length of list

array -> int, real
length of array

char -> int, real
unicode number of character

string -> int, real
length of string

person -> int, real
number of character

unit -> int, real
number of units

area -> int, real
number of area

basic -> string
text representation of the value

list, array -> string
elements converted to strings and concatenated

int, real -> char
character of this unicode number
(real is converted to int first)

string -> char
first character of string

int, real, char -> person
character of this number
(real or char is converted to int first)

int, real, char -> unit
unit of this number
(real or char is converted to int first)

int, real, char -> area
area of this number
(real or char is converted to int first)

Conversions of other data types are not implemented for security reasons and will generate run-time error.

Appendix C – operators tables

Unary operators

operator
operand
result

not
int
int
if operand = 0, returns 1, else returns 0

-
int
int
unary minus

-
real
real
unary minus

int
any
int
convert any value to int

real
any
real
convert any value to real

char
any
char
convert any value to char

string
any
string
convert any value to string

person
any
person
convert any value to person

unit
any
unit
convert any value to unit

area
any
area
convert any value to area

list
any
list
convert any value to list

array
any
array
convert any value to array

Binary operators

operator
operand1
operand2
result

+
int
int
int
integer addition

+
real
real
real
real addition

-
int
int
int
integer subtraction

-
real
real
real
real subtraction

*
int
int
int
integer multiplication

*
real
real
real
real multiplication

div
int
int
int
integer division

mod
int
int
int
remainder after integer division

/
real
real
real
real division

(if at least one operand is real, the real calculation is performed)

and
int
int
int
1, if both operands are non-zero, 0 otherwise

or
int
int
int
1, if at least one operand is non-zero, 0 otherwise

xor
int
int
int
1, if exactly one operand is non-zero, 0 otherwise

<
int
int
int
1, if first number is lesser than second one, 0 otherwise

<
real
real
real
1, if first number is greater than second one, 0 otherwise

<
string
string
string
1, if first string is alphabetically lesser, 0 otherwise

<=

>

>=

similarly to <

<>

==

(only when both operands are strings, string comparison is used, otherwise see arithmetic operation)

=
any
any
any
1, if operands have same type and value, 0 otherwise

\=
any
any
any
1, if operands are not of the same type and value, 0 otherwise

^
list
list
list
concatenation of lists

~
string
string
string
concatenation of strings

union
list
list
list
union of sets

insect
list
list
list
intersection of sets

diff
list
list
list
difference of sets

in
any
list
int
1, if first operand is element of list, 0 otherwise

